
TensorForce Documentation
Release 0.2alpha

reinforce.io

Nov 09, 2017

Contents:

1 Quick start 3
1.1 Agent and model overview . 4
1.2 Environments . 15
1.3 Preprocessing . 16
1.4 Runners . 19

2 More information 23

i

ii

TensorForce Documentation, Release 0.2alpha

TensorForce is an open source reinforcement learning library focused on providing clear APIs, readability and mod-
ularisation to deploy reinforcement learning solutions both in research and practice. TensorForce is built on top on
TensorFlow.

Contents: 1

TensorForce Documentation, Release 0.2alpha

2 Contents:

CHAPTER 1

Quick start

For a quick start, you can run one of our example scripts using the provided configurations, e.g. to run the TRPO agent
on CartPole, execute from the examples folder:

python examples/openai_gym.py CartPole-v0 -a ppo_agent -c examples/configs/ppo_agent.
→˓json -n examples/configs/ppo_network.json

In python, it could look like this:

examples/quickstart.py

import numpy as np

from tensorforce import Configuration
from tensorforce.agents import PPOAgent
from tensorforce.core.networks import layered_network_builder
from tensorforce.execution import Runner
from tensorforce.contrib.openai_gym import OpenAIGym

Create an OpenAIgym environment
env = OpenAIGym('CartPole-v0')

Create a Trust Region Policy Optimization agent
agent = PPOAgent(config=Configuration(

log_level='info',
batch_size=4096,

gae_lambda=0.97,
learning_rate=0.001,
entropy_penalty=0.01,
epochs=5,
optimizer_batch_size=512,
loss_clipping=0.2,

states=env.states,
actions=env.actions,

3

TensorForce Documentation, Release 0.2alpha

network=layered_network_builder([
dict(type='dense', size=32),
dict(type='dense', size=32)

])
))

Create the runner
runner = Runner(agent=agent, environment=env)

Callback function printing episode statistics
def episode_finished(r):

print("Finished episode {ep} after {ts} timesteps (reward: {reward})".format(ep=r.
→˓episode, ts=r.timestep,

→˓reward=r.episode_rewards[-1]))
return True

Start learning
runner.run(episodes=3000, max_timesteps=200, episode_finished=episode_finished)

Print statistics
print("Learning finished. Total episodes: {ep}. Average reward of last 100 episodes:
→˓{ar}.".format(ep=runner.episode,

→˓ ar=np.mean(

→˓ runner.episode_rewards[

→˓ -100:])))

1.1 Agent and model overview

A reinforcement learning agent provides methods to process states and return actions, to store past observations, and
to load and save models. Most agents employ a Model which implements the algorithms to calculate the next action
given the current state and to update model parameters from past experiences.

Environment <-> Runner <-> Agent <-> Model

Parameters to the agent are passed as a Configuration object. The configuration is passed on to the Model.

1.1.1 Ready-to-use algorithms

We implemented some of the most common RL algorithms and try to keep these up-to-date. Here we provide an
overview over all implemented agents and models.

Agent / General parameters

Agent is the base class for all reinforcement learning agents. Every agent inherits from this class.

class tensorforce.agents.Agent(states_spec, actions_spec, config)
Basic Reinforcement learning agent. An agent encapsulates execution logic of a particular reinforce-
ment learning algorithm and defines the external interface to the environment.

4 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

The agent hence acts an intermediate layer between environment and backend execution (value
function or policy updates).

Each agent requires the following configuration parameters:

• states: dict containing one or more state definitions.

• actions: dict containing one or more action definitions.

• preprocessing: dict or list containing state preprocessing configuration.

• exploration: dict containing action exploration configuration.

The configuration is passed to the Model and should thus include its configuration parameters, too.

Examples:

act(states, deterministic=False)
Return action(s) for given state(s). First, the states are preprocessed using the given preprocess-
ing configuration. Then, the states are passed to the model to calculate the desired action(s) to
execute.

After obtaining the actions, exploration might be added by the agent, depending on the explo-
ration configuration.

Parameters
• states – One state (usually a value tuple) or dict of states if multiple states are

expected.
• deterministic – If true, no exploration and sampling is applied.

Returns Scalar value of the action or dict of multiple actions the agent wants to exe-
cute.

static from_spec(spec, kwargs)
Creates an agent from a specification dict.

observe(terminal, reward)
Observe experience from the environment to learn from. Optionally preprocesses rewards Child
classes should call super to get the processed reward EX: terminal, reward = super()...

Parameters
• terminal – boolean indicating if the episode terminated after the observation.
• reward – scalar reward that resulted from executing the action.

reset()
Reset the agent to its initial state on episode start. Updates internal episode and timestep
counter, internal states, and resets preprocessors.

restore_model(directory=None, file=None)
Restore TensorFlow model. If no checkpoint file is given, the latest checkpoint is restored. If no
checkpoint directory is given, the model’s default saver directory is used (unless file specifies
the entire path).

Parameters
• directory – Optional checkpoint directory.
• file – Optional checkpoint file, or path if directory not given.

save_model(directory=None, append_timestep=True)
Save TensorFlow model. If no checkpoint directory is given, the model’s default saver directory
is used. Optionally appends current timestep to prevent overwriting previous checkpoint files.
Turn off to be able to load model from the same given path argument as given here.

Parameters
• directory – Optional checkpoint directory.
• use_global_step – Appends the current timestep to the checkpoint file if

true.

1.1. Agent and model overview 5

TensorForce Documentation, Release 0.2alpha

:param If this is set to True, the load path must include the checkpoint timestep suffix.: :param
For example, if stored to models/ and set to true, the exported file will be of the: :param form
models/model.ckpt-X where X is the last timestep saved. The load path must: :param precisely
match this file name. If this option is turned off, the checkpoint will: :param always overwrite
the file specified in path and the model can always be loaded under: :param this path.:

Returns Checkpoint path were the model was saved.

Model

The Model class is the base class for reinforcement learning models.

class tensorforce.models.Model(states_spec, actions_spec, config, **kwargs)
Bases: object

Base class for all (TensorFlow-based) models.

create_output_operations(states, internals, actions, terminal, reward, update, deter-
ministic)

Calls all the relevant TensorFlow functions for this model and hence creates all the TensorFlow
operations involved.

Parameters
• states – Dict of state tensors.
• internals – List of prior internal state tensors.
• actions – Dict of action tensors.
• terminal – Terminal boolean tensor.
• reward – Reward tensor.
• update – Boolean tensor indicating whether this call happens during an update.
• deterministic – Boolean tensor indicating whether action should be chosen

deterministically.

get_optimizer_kwargs(states, internals, actions, terminal, reward, update)
Returns the optimizer arguments including the time, the list of variables to optimize, and vari-
ous argument-free functions (in particular fn_loss returning the combined 0-dim batch loss
tensor) which the optimizer might require to perform an update step.

Parameters
• states – Dict of state tensors.
• internals – List of prior internal state tensors.
• actions – Dict of action tensors.
• terminal – Terminal boolean tensor.
• reward – Reward tensor.
• update – Boolean tensor indicating whether this call happens during an update.

Returns Loss tensor of the size of the batch.

get_summaries()
Returns the TensorFlow summaries reported by the model

Returns List of summaries

get_variables(include_non_trainable=False)
Returns the TensorFlow variables used by the model.

Returns List of variables.

initialize(custom_getter)
Creates the TensorFlow placeholders and functions for this model. Moreover adds the internal
state placeholders and initialization values to the model.

Parameters custom_getter – The custom_getter_ object to use for tf.
make_template when creating TensorFlow functions.

6 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

reset()
Resets the model to its initial state on episode start.

Returns Current episode and timestep counter, and a list containing the internal states
initializations.

restore(directory=None, file=None)
Restore TensorFlow model. If no checkpoint file is given, the latest checkpoint is restored. If no
checkpoint directory is given, the model’s default saver directory is used (unless file specifies
the entire path).

Parameters
• directory – Optional checkpoint directory.
• file – Optional checkpoint file, or path if directory not given.

save(directory=None, append_timestep=True)
Save TensorFlow model. If no checkpoint directory is given, the model’s default saver directory
is used. Optionally appends current timestep to prevent overwriting previous checkpoint files.
Turn off to be able to load model from the same given path argument as given here.

Parameters
• directory – Optional checkpoint directory.
• append_timestep – Appends the current timestep to the checkpoint file if

true.
Returns Checkpoint path were the model was saved.

tf_actions_and_internals(states, internals, update, deterministic)
Creates the TensorFlow operations for retrieving the actions (and posterior internal states) in
reaction to the given input states (and prior internal states).

Parameters
• states – Dict of state tensors.
• internals – List of prior internal state tensors.
• update – Boolean tensor indicating whether this call happens during an update.
• deterministic – Boolean tensor indicating whether action should be chosen

deterministically.
Returns Actions and list of posterior internal state tensors.

tf_discounted_cumulative_reward(terminal, reward, discount, final_reward=0.0)
Creates the TensorFlow operations for calculating the discounted cumulative rewards for a given
sequence of rewards.

Parameters
• terminal – Terminal boolean tensor.
• reward – Reward tensor.
• discount – Discount factor.
• final_reward – Last reward value in the sequence.

Returns Discounted cumulative reward tensor.

tf_loss_per_instance(states, internals, actions, terminal, reward, update)
Creates the TensorFlow operations for calculating the loss per batch instance of the given input
states and actions.

Parameters
• states – Dict of state tensors.
• internals – List of prior internal state tensors.
• actions – Dict of action tensors.
• terminal – Terminal boolean tensor.
• reward – Reward tensor.
• update – Boolean tensor indicating whether this call happens during an update.

Returns Loss tensor.

tf_optimization(states, internals, actions, terminal, reward, update)

1.1. Agent and model overview 7

TensorForce Documentation, Release 0.2alpha

Creates the TensorFlow operations for performing an optimization update step based on the
given input states and actions batch.

Parameters
• states – Dict of state tensors.
• internals – List of prior internal state tensors.
• actions – Dict of action tensors.
• terminal – Terminal boolean tensor.
• reward – Reward tensor.
• update – Boolean tensor indicating whether this call happens during an update.

Returns The optimization operation.

tf_regularization_losses(states, internals, update)
Creates the TensorFlow operations for calculating the regularization losses for the given input
states.

Parameters
• states – Dict of state tensors.
• internals – List of prior internal state tensors.
• update – Boolean tensor indicating whether this call happens during an update.

Returns Dict of regularization loss tensors.

MemoryAgent

class tensorforce.agents.MemoryAgent(states_spec, actions_spec, config)
Bases: tensorforce.agents.agent.Agent

The MemoryAgent class implements a replay memory, from which it samples batches to update
the value function.

import_observations(observations)
Load an iterable of observation dicts into the replay memory.

Parameters
• observations – An iterable with each element containing an observation.

Each
• requires keys 'state','action','reward','terminal',
'internal'. (observation) –

• an empty list[] for 'internal' if internal state is
irrelevant. (Use) –

Returns:

BatchAgent

class tensorforce.agents.BatchAgent(states_spec, actions_spec, config)
Bases: tensorforce.agents.agent.Agent

The BatchAgent class implements a batch memory, which is cleared after every update.

Each agent requires the following Configuration parameters:

• states: dict containing one or more state definitions.

• actions: dict containing one or more action definitions.

• preprocessing: dict or list containing state preprocessing configuration.

• exploration: dict containing action exploration configuration.

The BatchAgent class additionally requires the following parameters:

8 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

• batch_size: integer of the batch size.

• keep_last_timestep: bool optionally keep the last observation for use in the next batch

observe(terminal, reward)
Adds an observation and performs an update if the necessary conditions are satisfied, i.e. if one
batch of experience has been collected as defined by the batch size.

In particular, note that episode control happens outside of the agent since the agent should be
agnostic to how the training data is created.

Parameters
• reward – float of a scalar reward
• terminal – boolean whether episode is terminated or not

Returns: void

Deep-Q-Networks (DQN)

class tensorforce.agents.DQNAgent(states_spec, actions_spec, network_spec, config)
Bases: tensorforce.agents.memory_agent.MemoryAgent

Deep-Q-Network agent (DQN). The piece de resistance of deep reinforcement learning as described
by Minh et al. (2015). Includes an option for double-DQN (DDQN; van Hasselt et al., 2015)

DQN chooses from one of a number of discrete actions by taking the maximum Q-value from the
value function with one output neuron per available action. DQN uses a replay memory for experi-
ence playback.

Configuration:

Each agent requires the following configuration parameters:

• states: dict containing one or more state definitions.

• actions: dict containing one or more action definitions.

• preprocessing: dict or list containing state preprocessing configuration.

• exploration: dict containing action exploration configuration.

The MemoryAgent class additionally requires the following parameters:

• batch_size: integer of the batch size.

• memory_capacity: integer of maximum experiences to store.

• memory: string indicating memory type (‘replay’ or ‘prioritized_replay’).

• update_frequency: integer indicating the number of steps between model updates.

• first_update: integer indicating the number of steps to pass before the first update.

• repeat_update: integer indicating how often to repeat the model update.

Each model requires the following configuration parameters:

• discount: float of discount factor (gamma).

• learning_rate: float of learning rate (alpha).

• optimizer: string of optimizer to use (e.g. ‘adam’).

• device: string of tensorflow device name.

• tf_summary: string directory to write tensorflow summaries. Default None

• tf_summary_level: int indicating which tensorflow summaries to create.

1.1. Agent and model overview 9

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
https://arxiv.org/abs/1509.06461

TensorForce Documentation, Release 0.2alpha

• tf_summary_interval: int number of calls to get_action until writing tensorflow sum-
maries on update.

• log_level: string containing logleve (e.g. ‘info’).

• distributed: boolean indicating whether to use distributed tensorflow.

• global_model: global model.

• session: session to use.

The DQN agent expects the following additional configuration parameters:

• target_update_frequency: int of states between updates of the target network.

• update_target_weight: float of update target weight (tau parameter).

• double_q_model: boolean indicating whether to use a double q-model.

• clip_loss: float if not 0, uses the huber loss with clip_loss as the linear bound

• scope: TensorFlow variable scope name (default: ‘vpg’)

• batch_size: Positive integer (mandatory)

• learning_rate: positive float (default: 1e-3)

• discount: Positive float, at most 1.0 (default: 0.99)

• normalize_rewards: Boolean (default: false)

• entropy_regularization: None or positive float (default: none)

• optimizer: Specification dict (default: Adam with learning rate 1e-3)

• state_preprocessing: None or dict with (default: none)

• exploration: None or dict with (default: none)

• reward_preprocessing: None or dict with (default: none)

• log_level: Logging level, one of the following values (default: ‘info’)

– ‘info’, ‘debug’, ‘critical’, ‘warning’, ‘fatal’

• summary_logdir: None or summary directory string (default: none)

• summary_labels: List of summary labels to be reported, some possible values below (default:
‘total-loss’)

– ‘total-loss’

– ‘losses’

– ‘variables’

– ‘activations’

– ‘relu’

• summary_frequency: Positive integer (default: 1)

10 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

Normalized Advantage Functions

class tensorforce.agents.NAFAgent(states_spec, actions_spec, network_spec, config)
Bases: tensorforce.agents.memory_agent.MemoryAgent

NAF: https://arxiv.org/abs/1603.00748

• scope: TensorFlow variable scope name (default: ‘vpg’)

• batch_size: Positive integer (mandatory)

• learning_rate: positive float (default: 1e-3)

• discount: Positive float, at most 1.0 (default: 0.99)

• normalize_rewards: Boolean (default: false)

• entropy_regularization: None or positive float (default: none)

• optimizer: Specification dict (default: Adam with learning rate 1e-3)

• state_preprocessing: None or dict with (default: none)

• exploration: None or dict with (default: none)

• reward_preprocessing: None or dict with (default: none)

• log_level: Logging level, one of the following values (default: ‘info’)

– ‘info’, ‘debug’, ‘critical’, ‘warning’, ‘fatal’

• summary_logdir: None or summary directory string (default: none)

• summary_labels: List of summary labels to be reported, some possible values below (default:
‘total-loss’)

– ‘total-loss’

– ‘losses’

– ‘variables’

– ‘activations’

– ‘relu’

• summary_frequency: Positive integer (default: 1)

Deep-Q-learning from demonostration (DQFD)

class tensorforce.agents.DQFDAgent(states_spec, actions_spec, network_spec, config)
Bases: tensorforce.agents.memory_agent.MemoryAgent

Deep Q-learning from demonstration (DQFD) agent (Hester et al., 2017). This agent uses DQN to
pre-train from demonstration data.

Configuration:

Each agent requires the following configuration parameters:

• states: dict containing one or more state definitions.

• actions: dict containing one or more action definitions.

1.1. Agent and model overview 11

https://arxiv.org/abs/1603.00748
https://arxiv.org/abs/1704.03732

TensorForce Documentation, Release 0.2alpha

• preprocessing: dict or list containing state preprocessing configuration.

• exploration: dict containing action exploration configuration.

Each model requires the following configuration parameters:

• discount: float of discount factor (gamma).

• learning_rate: float of learning rate (alpha).

• optimizer: string of optimizer to use (e.g. ‘adam’).

• device: string of tensorflow device name.

• tf_summary: string directory to write tensorflow summaries. Default None

• tf_summary_level: int indicating which tensorflow summaries to create.

• tf_summary_interval: int number of calls to get_action until writing tensorflow sum-
maries on update.

• log_level: string containing logleve (e.g. ‘info’).

• distributed: boolean indicating whether to use distributed tensorflow.

• global_model: global model.

• session: session to use.

The DQFDAgent class additionally requires the following parameters:

• batch_size: integer of the batch size.

• memory_capacity: integer of maximum experiences to store.

• memory: string indicating memory type (‘replay’ or ‘prioritized_replay’).

• min_replay_size: integer of minimum replay size before the first update.

• update_rate: float of the update rate (e.g. 0.25 = every 4 steps).

• target_network_update_rate: float of target network update rate (e.g. 0.01 = every
100 steps).

• use_target_network: boolean indicating whether to use a target network.

• update_repeat: integer of how many times to repeat an update.

• update_target_weight: float of update target weight (tau parameter).

• demo_sampling_ratio: float, ratio of expert data used at runtime to train from.

• supervised_weight: float, weight of large margin classifier loss.

• expert_margin: float of difference in Q-values between expert action and other actions
enforced .. code-block:

by the large margin function.

• clip_loss: float if not 0, uses the huber loss with clip_loss as the linear bound

import_demonstrations(demonstrations)
Imports demonstrations, i.e. expert observations. Note that for large numbers of observations,
set_demonstrations is more appropriate, which directly sets memory contents to an array an
expects a different layout.

Parameters demonstrations – List of observation dicts

12 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

observe(reward, terminal)
Adds observations, updates via sampling from memories according to update rate. DQFD sam-
ples from the online replay memory and the demo memory with the fractions controlled by a
hyper parameter p called ‘expert sampling ratio.

Parameters
• reward –
• terminal –

pretrain(steps)
Computes pretrain updates.

Parameters steps – Number of updates to execute.

set_demonstrations(batch)
Set all demonstrations from batch data. Expects a dict wherein each value contains an array
containing all states, actions, rewards, terminals and internals respectively.

Parameters batch –

Vanilla Policy Gradient

class tensorforce.agents.VPGAgent(states_spec, actions_spec, network_spec, config)
Bases: tensorforce.agents.batch_agent.BatchAgent

Vanilla Policy Gradient agent as described by [Sutton et al. (1999)] (https://papers.nips.cc/paper/
1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf).

• scope: TensorFlow variable scope name (default: ‘vpg’)

• batch_size: Positive integer (mandatory)

• discount: Positive float, at most 1.0 (default: 0.99)

• normalize_rewards: Boolean (default: false)

• entropy_regularization: None or positive float (default: none)

• gae_lambda: None or float between 0.0 and 1.0 (default: none)

• optimizer: Specification dict (default: Adam with learning rate 1e-3)

• baseline_mode: None, or one of ‘states’ or ‘network’ specifying the baseline input (default:
none)

• baseline: None or specification dict, or per-state specification for aggregated baseline (default:
none)

• baseline_optimizer: None or specification dict (default: none)

• state_preprocessing: None or dict with (default: none)

• exploration: None or dict with (default: none)

• reward_preprocessing: None or dict with (default: none)

• log_level: Logging level, one of the following values (default: ‘info’)

– ‘info’, ‘debug’, ‘critical’, ‘warning’, ‘fatal’

• summary_logdir: None or summary directory string (default: none)

1.1. Agent and model overview 13

https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf

TensorForce Documentation, Release 0.2alpha

• summary_labels: List of summary labels to be reported, some possible values below (default:
‘total-loss’)

– ‘total-loss’

– ‘losses’

– ‘variables’

– ‘activations’

– ‘relu’

• summary_frequency: Positive integer (default: 1)

Trust Region Policy Optimization (TRPO)

class tensorforce.agents.TRPOAgent(states_spec, actions_spec, network_spec, config)
Bases: tensorforce.agents.batch_agent.BatchAgent

Trust Region Policy Optimization (Schulman et al., 2015) agent.

• scope: TensorFlow variable scope name (default: ‘trpo’)

• batch_size: Positive integer (mandatory)

• learning_rate: Max KL divergence, positive float (default: 1e-2)

• discount: Positive float, at most 1.0 (default: 0.99)

• entropy_regularization: None or positive float (default: none)

• gae_lambda: None or float between 0.0 and 1.0 (default: none)

• normalize_rewards: Boolean (default: false)

• likelihood_ratio_clipping: None or positive float (default: none)

• baseline_mode: None, or one of ‘states’ or ‘network’ specifying the baseline input (default:
none)

• baseline: None or specification dict, or per-state specification for aggregated baseline (default:
none)

• baseline_optimizer: None or specification dict (default: none)

• state_preprocessing: None or dict with (default: none)

• exploration: None or dict with (default: none)

• reward_preprocessing: None or dict with (default: none)

• log_level: Logging level, one of the following values (default: ‘info’)

– ‘info’, ‘debug’, ‘critical’, ‘warning’, ‘fatal’

• summary_logdir: None or summary directory string (default: none)

• summary_labels: List of summary labels to be reported, some possible values below (default:
‘total-loss’)

– ‘total-loss’

– ‘losses’

14 Chapter 1. Quick start

https://arxiv.org/abs/1502.05477

TensorForce Documentation, Release 0.2alpha

– ‘variables’

– ‘activations’

– ‘relu’

• summary_frequency: Positive integer (default: 1)

1.1.2 State preprocessing

The agent handles state preprocessing. A preprocessor takes the raw state input from the environment and modifies it
(for instance, image resize, state concatenation, etc.). You can find information about our ready-to-use preprocessors
here.

1.1.3 Building your own agent

If you want to build your own agent, it should always inherit from Agent. If your agent uses a replay memory, it
should probably inherit from MemoryAgent, if it uses a batch replay that is emptied after each update, it should
probably inherit from BatchAgent.

We distinguish between agents and models. The Agent class handles the interaction with the environment, such as
state preprocessing, exploration and observation of rewards. The Model class handles the mathematical operations,
such as building the tensorflow operations, calculating the desired action and updating (i.e. optimizing) the model
weights.

To start building your own agent, please refer to this blogpost to gain a deeper understanding of the internals of the
TensorForce library. Afterwards, have look on a sample implementation, e.g. the DQN Agent and DQN Model.

1.2 Environments

A reinforcement learning environment provides the API to a simulated or real environment as the subject for optimiza-
tion. It could be anything from video games (e.g. Atari) to robots or trading systems. The agent interacts with this
environment and learns to act optimally in its dynamics.

Environment <-> Runner <-> Agent <-> Model

class tensorforce.environments.Environment
Base environment class.

actions
Return the action space. Might include subdicts if multiple actions are available simultaneously.

Returns: dict of action properties (continuous, number of actions)

close()
Close environment. No other method calls possible afterwards.

execute(actions)
Executes action, observes next state(s) and reward.

Parameters actions – Actions to execute.
Returns (Dict of) next state(s), boolean indicating terminal, and reward signal.

reset()
Reset environment and setup for new episode.

Returns initial state of resetted environment.

1.2. Environments 15

https://reinforce.io
https://github.com/reinforceio/tensorforce/blob/master/tensorforce/agents/dqn_agent.py
https://github.com/reinforceio/tensorforce/blob/master/tensorforce/models/dqn_model.py

TensorForce Documentation, Release 0.2alpha

states
Return the state space. Might include subdicts if multiple states are available simultaneously.

Returns: dict of state properties (shape and type).

1.2.1 Ready-to-use environments

OpenAI Gym

OpenAI Universe

Deepmind Lab

1.3 Preprocessing

Often it is necessary to modify state input tensors before passing them to the reinforcement learning agent. This could
be due to various reasons, e.g.:

• Feature scaling / input normalization,

• Data reduction,

• Ensuring the Markov property by concatenating multiple states (e.g. in Atari)

TensorForce comes with a number of ready-to-use preprocessors, a preprocessing stack and easy ways to implement
your own preprocessors.

1.3.1 Usage

The

Each preprocessor implements three methods:

1. The constructor (__init__) for parameter initialization

2. process(state) takes a state and returns the processed state

3. processed_shape(original_shape) takes a shape and returns the processed shape

The preprocessing stack iteratively calls these functions of all preprocessors in the stack and returns the result.

Using one preprocessor

16 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

from tensorforce.core.preprocessing import Sequence

pp_seq = Sequence(4) # initialize preprocessor (return sequence of last 4 states)

state = env.reset() # reset environment
processed_state = pp_seq.process(state) # process state

Using a preprocessing stack

You can stack multipe preprocessors:

from tensorforce.core.preprocessing import Preprocessing, Grayscale, Sequence

pp_gray = Grayscale() # initialize grayscale preprocessor
pp_seq = Sequence(4) # initialize sequence preprocessor

stack = Preprocessing() # initialize preprocessing stack
stack.add(pp_gray) # add grayscale preprocessor to stack
stack.add(pp_seq) # add maximum preprocessor to stack

state = env.reset() # reset environment
processed_state = stack.process(state) # process state

Using a configuration dict

If you use configuration objects, you can build your preprocessing stack from a config:

from tensorforce.core.preprocessing import Preprocessing

preprocessing_config = [
{

"type": "image_resize",
"kwargs": {

"width": 84,
"height": 84

}
}, {

"type": "grayscale"
}, {

"type": "center"
}, {

"type": "sequence",
"kwargs": {

"length": 4
}

}
]

stack = Preprocessing.from_spec(preprocessing_config)
config.state_shape = stack.shape(config.state_shape)

The Agent class expects a preprocessing configuration parameter and then handles preprocessing automatically:

from tensorforce.agents import DQNAgent

1.3. Preprocessing 17

TensorForce Documentation, Release 0.2alpha

agent = DQNAgent(config=dict(
states=...,
actions=...,
preprocessing=preprocessing_config,
...

))

1.3.2 Ready-to-use preprocessors

These are the preprocessors that come with TensorForce:

Center

Grayscale

class tensorforce.core.preprocessing.Grayscale(weights=(0.299, 0.587, 0.114))
Bases: tensorforce.core.preprocessing.preprocessor.Preprocessor

Turn 3D color state into grayscale.

ImageResize

class tensorforce.core.preprocessing.ImageResize(width, height)
Bases: tensorforce.core.preprocessing.preprocessor.Preprocessor

Resize image to width x height.

Normalize

class tensorforce.core.preprocessing.Normalize
Bases: tensorforce.core.preprocessing.preprocessor.Preprocessor

Normalize state. Subtract minimal value and divide by range.

Sequence

class tensorforce.core.preprocessing.Sequence(length=2)
Bases: tensorforce.core.preprocessing.preprocessor.Preprocessor

Concatenate length state vectors. Example: Used in Atari problems to create the Markov property.

1.3.3 Building your own preprocessor

All preprocessors should inherit from tensorforce.core.preprocessing.Preprocessor.

For a start, please refer to the source of the Grayscale preprocessor.

18 Chapter 1. Quick start

https://github.com/reinforceio/tensorforce/blob/master/tensorforce/core/preprocessing/grayscale.py

TensorForce Documentation, Release 0.2alpha

1.4 Runners

A “runner” manages the interaction between the Environment and the Agent. TensorForce comes with ready-to-use
runners. Of course, you can implement your own runners, too. If you are not using simulation environments, the
runner is simply your application code using the Agent API.

Environment <-> Runner <-> Agent <-> Model

1.4.1 Ready-to-use runners

We implemented a standard runner, a threaded runner (for real-time interaction e.g. with OpenAI Universe) and a
distributed runner for A3C variants.

Runner

This is the standard runner. It requires an agent and an environment for initialization:

from tensorforce.execution import Runner

runner = Runner(
agent = agent, # Agent object
environment = env # Environment object

)

A reinforcement learning agent observes states from the environment, selects actions and collect experience which is
used to update its model and improve action selection. You can get information about our ready-to-use agents here.

The environment object is either the “real” environment, or a proxy which fulfills the actions selected by the agent in
the real world. You can find information about environments here.

The runner is started with the Runner.run(...) method:

runner.run(
episodes = int, # number of episodes to run
max_timesteps = int, # maximum timesteps per episode
episode_finished = object, # callback function called when episode is finished

)

You can use the episode_finished callback for printing performance feedback:

def episode_finished(r):
if r.episode % 10 == 0:

print("Finished episode {ep} after {ts} timesteps".format(ep=r.episode + 1,
→˓ts=r.timestep + 1))

print("Episode reward: {}".format(r.episode_rewards[-1]))
print("Average of last 10 rewards: {}".format(np.mean(r.episode_rewards[-

→˓10:])))
return True

Using the Runner

Here is some example code for using the runner (without preprocessing).

1.4. Runners 19

TensorForce Documentation, Release 0.2alpha

from tensorforce.config import Configuration
from tensorforce.environments.openai_gym import OpenAIGym
from tensorforce.agents import DQNAgent
from tensorforce.execution import Runner

def main():
gym_id = 'CartPole-v0'
max_episodes = 10000
max_timesteps = 1000

env = OpenAIGym(gym_id)

config = Configuration({
'actions': env.actions,
'states': env.states
...

})

agent = DQNAgent(config)

runner = Runner(agent, env)

def episode_finished(r):
if r.episode % report_episodes == 0:

logger.info("Finished episode {ep} after {ts} timesteps".format(ep=r.
→˓episode, ts=r.timestep))

logger.info("Episode reward: {}".format(r.episode_rewards[-1]))
logger.info("Average of last 100 rewards: {}".format(sum(r.episode_

→˓rewards[-100:]) / 100))
return True

print("Starting {agent} for Environment '{env}'".format(agent=agent, env=env))

runner.run(max_episodes, max_timesteps, episode_finished=episode_finished)

print("Learning finished. Total episodes: {ep}".format(ep=runner.episode))

if __name__ == '__main__':
main()

1.4.2 Building your own runner

There are three mandatory tasks any runner implements: Obtaining an action from the agent, passing it to the environ-
ment, and passing the resulting observation to the agent.

Get action
action = agent.act(state, self.episode)

Execute action in the environment
state, reward, terminal_state = environment.execute(action)

Pass observation to the agent
agent.observe(state, action, reward, terminal_state)

The key idea here is the separation of concerns. External code should not need to manage batches or remember network
features, this is that the agent is for. Conversely, an agent need not concern itself with how a model is implemented

20 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

and the API should facilitate easy combination of different agents and models.

If you would like to build your own runner, it is probably a good idea to take a look at the source code of our Runner
class.

1.4. Runners 21

https://github.com/reinforceio/tensorforce/blob/master/tensorforce/execution/runner.py
https://github.com/reinforceio/tensorforce/blob/master/tensorforce/execution/runner.py

TensorForce Documentation, Release 0.2alpha

22 Chapter 1. Quick start

CHAPTER 2

More information

You can find more information at our TensorForce GitHub repository.

We have a seperate repository available for benchmarking our algorithm implementations [here](https://github.com/
reinforceio/tensorforce-benchmark).

23

https://github.com/reinforceio/TensorForce
https://github.com/reinforceio/tensorforce-benchmark
https://github.com/reinforceio/tensorforce-benchmark

TensorForce Documentation, Release 0.2alpha

24 Chapter 2. More information

Index

A
act() (tensorforce.agents.Agent method), 5
actions (tensorforce.environments.Environment at-

tribute), 15
Agent (class in tensorforce.agents), 4

B
BatchAgent (class in tensorforce.agents), 8

C
close() (tensorforce.environments.Environment method),

15
create_output_operations() (tensorforce.models.Model

method), 6

D
DQFDAgent (class in tensorforce.agents), 11
DQNAgent (class in tensorforce.agents), 9

E
Environment (class in tensorforce.environments), 15
execute() (tensorforce.environments.Environment

method), 15

F
from_spec() (tensorforce.agents.Agent static method), 5

G
get_optimizer_kwargs() (tensorforce.models.Model

method), 6
get_summaries() (tensorforce.models.Model method), 6
get_variables() (tensorforce.models.Model method), 6
Grayscale (class in tensorforce.core.preprocessing), 18

I
ImageResize (class in tensorforce.core.preprocessing), 18
import_demonstrations() (tensor-

force.agents.DQFDAgent method), 12

import_observations() (tensorforce.agents.MemoryAgent
method), 8

initialize() (tensorforce.models.Model method), 6

M
MemoryAgent (class in tensorforce.agents), 8
Model (class in tensorforce.models), 6

N
NAFAgent (class in tensorforce.agents), 11
Normalize (class in tensorforce.core.preprocessing), 18

O
observe() (tensorforce.agents.Agent method), 5
observe() (tensorforce.agents.BatchAgent method), 9
observe() (tensorforce.agents.DQFDAgent method), 12

P
pretrain() (tensorforce.agents.DQFDAgent method), 13

R
reset() (tensorforce.agents.Agent method), 5
reset() (tensorforce.environments.Environment method),

15
reset() (tensorforce.models.Model method), 6
restore() (tensorforce.models.Model method), 7
restore_model() (tensorforce.agents.Agent method), 5

S
save() (tensorforce.models.Model method), 7
save_model() (tensorforce.agents.Agent method), 5
Sequence (class in tensorforce.core.preprocessing), 18
set_demonstrations() (tensorforce.agents.DQFDAgent

method), 13
states (tensorforce.environments.Environment attribute),

15

T
tf_actions_and_internals() (tensorforce.models.Model

method), 7

25

TensorForce Documentation, Release 0.2alpha

tf_discounted_cumulative_reward() (tensor-
force.models.Model method), 7

tf_loss_per_instance() (tensorforce.models.Model
method), 7

tf_optimization() (tensorforce.models.Model method), 7
tf_regularization_losses() (tensorforce.models.Model

method), 8
TRPOAgent (class in tensorforce.agents), 14

V
VPGAgent (class in tensorforce.agents), 13

26 Index

	Quick start
	Agent and model overview
	Environments
	Preprocessing
	Runners

	More information

