

Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce is an open-source deep reinforcement learning framework, with an emphasis on modularized flexible library design and straightforward usability for applications in research and practice. Tensorforce is built on top of Google’s TensorFlow framework [https://www.tensorflow.org/] and requires Python 3.

Tensorforce follows a set of high-level design choices which differentiate it from other similar libraries:

	Modular component-based design: Feature implementations, above all, strive to be as generally applicable and configurable as possible, potentially at some cost of faithfully resembling details of the introducing paper.

	Separation of RL algorithm and application: Algorithms are agnostic to the type and structure of inputs (states/observations) and outputs (actions/decisions), as well as the interaction with the application environment.

	Full-on TensorFlow models: The entire reinforcement learning logic, including control flow, is implemented in TensorFlow, to enable portable computation graphs independent of application programming language, and to facilitate the deployment of models.

Basics

	Installation

	Getting started
	Initializing an environment

	Initializing an agent

	Training and evaluation

	Agent specification
	States and actions specification

	How to specify modules
	Dictionary with module type and arguments

	JSON specification file (plus additional arguments)

	Module path (plus additional arguments)

	Callable or Type (plus additional arguments)

	Default module: only arguments or first argument

	Features
	Multi-input and non-sequential network architectures

	Abort-terminal due to timestep limit

	Action masking

	Parallel environment execution

	Save & restore
	TensorFlow saver (full model)

	NumPy / HDF5 (only weights)

	SavedModel export

	TensorBoard

	Act-experience-update interaction

	Record & pretrain

	run.py – Runner
	Agent arguments

	Environment arguments

	Parallel execution arguments

	Runner arguments

	Logging arguments

	tune.py – Hyperparameter tuner
	Environment arguments

	Runner arguments

	Tuner arguments

Agents

	General agent interface
	Initialization and termination

	Reinforcement learning interface

	Get initial internals (for independent-act)

	Experience - update interface

	Pretraining

	Loading and saving

	Tensor value tracking

	Specification and architecture

	Constant Agent

	Random Agent

	Tensorforce Agent

	Vanilla Policy Gradient

	Proximal Policy Optimization

	Trust-Region Policy Optimization

	Deterministic Policy Gradient

	Deep Q-Network

	Double DQN

	Dueling DQN

	Actor-Critic

	Advantage Actor-Critic

Modules

	Distributions

	Layers

	Memories

	Networks

	Objectives

	Optimizers

	Parameters

	Policies

	Preprocessing

Execution

	Runner utility

Environments

	General environment interface
	Initialization and termination

	Properties

	Interaction functions

	OpenAI Gym

	Arcade Learning Environment

	OpenAI Retro

	Open Sim

	PyGame Learning Environment

	ViZDoom

Installation

A stable version of Tensorforce is periodically updated on PyPI and installed as follows:

pip3 install tensorforce

To always use the latest version of Tensorforce, install the GitHub version instead:

git clone https://github.com/tensorforce/tensorforce.git
cd tensorforce
pip3 install -e .

Environments require additional packages for which there are setup options available (ale, gym, retro, vizdoom, carla; or envs for all environments), however, some require additional tools to be installed separately (see environments documentation [http://tensorforce.readthedocs.io]). Other setup options include tfa for TensorFlow Addons [https://www.tensorflow.org/addons] and tune for HpBandSter [https://github.com/automl/HpBandSter] required for the tune.py script.

Note on GPU usage: Different from (un)supervised deep learning, RL does not always benefit from running on a GPU, depending on environment and agent configuration. In particular for RL-typical environments with low-dimensional state spaces (i.e., no images), one usually gets better performance by running on CPU only. Consequently, Tensorforce is configured to run on CPU by default, which can be changed via the agent’s config argument, for instance, config=dict(device='GPU').

Dockerfile

If you want to use Tensorforce within a Docker container, the following is a minimal Dockerfile to get started:

FROM python:3.8
RUN \
 pip3 install tensorforce

Or alternatively for the latest version:

FROM python:3.8
RUN \
 git clone https://github.com/tensorforce/tensorforce.git && \
 pip3 install -e tensorforce

Subsequently, the container can be built via:

docker build .

Getting started

Quickstart example [https://github.com/tensorforce/tensorforce/blob/master/examples/quickstart.py]

Initializing an environment

It is recommended to initialize an environment via the Environment.create(...) interface.

from tensorforce.environments import Environment

For instance, the OpenAI CartPole environment can be initialized as follows (see environment docs for available environments and arguments):

environment = Environment.create(
 environment='gym', level='CartPole', max_episode_timesteps=500
)

Gym’s pre-defined versions are also accessible:

environment = Environment.create(environment='gym', level='CartPole-v1')

Alternatively, an environment can be specified as a config file:

{
 "environment": "gym",
 "level": "CartPole"
}

Environment config files can be loaded by passing their file path:

environment = Environment.create(
 environment='environment.json', max_episode_timesteps=500
)

Custom Gym environments can be used in the same way, but require the corresponding class(es) to be imported and registered accordingly.

Finally, it is possible to implement a custom environment using Tensorforce’s Environment interface:

class CustomEnvironment(Environment):

 def __init__(self):
 super().__init__()

 def states(self):
 return dict(type='float', shape=(8,))

 def actions(self):
 return dict(type='int', num_values=4)

 # Optional: should only be defined if environment has a natural fixed
 # maximum episode length; otherwise specify maximum number of training
 # timesteps via Environment.create(..., max_episode_timesteps=???)
 def max_episode_timesteps(self):
 return super().max_episode_timesteps()

 # Optional additional steps to close environment
 def close(self):
 super().close()

 def reset(self):
 state = np.random.random(size=(8,))
 return state

 def execute(self, actions):
 next_state = np.random.random(size=(8,))
 terminal = np.random.random() < 0.5
 reward = np.random.random()
 return next_state, terminal, reward

Custom environment implementations can be loaded by passing either the environment object itself:

environment = Environment.create(
 environment=CustomEnvironment, max_episode_timesteps=100
)

or its module path (e.g., assuming the class is defined in file envs/custom_env.py):

environment = Environment.create(
 environment='envs.custom_env', max_episode_timesteps=100
)

It is generally recommended to specify the max_episode_timesteps argument of Environment.create(...) (at least for training), as some agent parameters may rely on this value.

Initializing an agent

Similarly to environments, it is recommended to initialize an agent via the Agent.create(...) interface.

from tensorforce.agents import Agent

For instance, the generic Tensorforce agent can be initialized as follows (see agent docs for available agents and arguments):

agent = Agent.create(
 agent='tensorforce', environment=environment, update=64,
 optimizer=dict(optimizer='adam', learning_rate=1e-3),
 objective='policy_gradient', reward_estimation=dict(horizon=20)
)

Other pre-defined agent classes can alternatively be used, for instance, Proximal Policy Optimization:

agent = Agent.create(
 agent='ppo', environment=environment, batch_size=10, learning_rate=1e-3
)

Alternatively, an agent can be specified as a config file:

{
 "agent": "tensorforce",
 "update": 64,
 "optimizer": {
 "optimizer": "adam",
 "learning_rate": 1e-3
 },
 "objective": "policy_gradient",
 "reward_estimation": {
 "horizon": 20
 }
}

Agent config files can be loaded by passing their file path:

agent = Agent.create(agent='agent.json', environment=environment)

While it is possible to specify the agent arguments states, actions and max_episode_timesteps, it is generally recommended to specify the environment argument instead (which will automatically infer the other values accordingly), by passing the environment object as returned by Environment.create(...).

Training and evaluation

It is recommended to use the execution utilities for training and evaluation, like the Runner utility, which offer a range of configuration options:

from tensorforce.execution import Runner

A basic experiment consisting of training and subsequent evaluation can be written in a few lines of code:

runner = Runner(
 agent='agent.json',
 environment=dict(environment='gym', level='CartPole'),
 max_episode_timesteps=500
)

runner.run(num_episodes=200)

runner.run(num_episodes=100, evaluation=True)

runner.close()

The same interface also makes it possible to run experiments involving multiple parallelized environments:

runner = Runner(
 agent='agent.json',
 environment=dict(environment='gym', level='CartPole'),
 max_episode_timesteps=500,
 num_parallel=5, remote='multiprocessing'
)

runner.run(num_episodes=100)

runner.close()

Note that in this case both agent and environment are created as part of Runner, not via Agent.create(...) and Environment.create(...). If agent and environment are specified separately, the user is required to take care of passing the agent arguments environment and parallel_interactions (in the parallelized case) as well as closing both agent and environment separately at the end.

The execution utility classes take care of handling the agent-environment interaction correctly, and thus should be used where possible. Alternatively, if more detailed control over the agent-environment interaction is required, a simple training loop can be defined as follows, using the act-observe interaction pattern (see also the act-observe example [https://github.com/tensorforce/tensorforce/blob/master/examples/act_observe_interface.py]):

Create agent and environment
environment = Environment.create(
 environment='environment.json', max_episode_timesteps=500
)
agent = Agent.create(agent='agent.json', environment=environment)

Train for 100 episodes
for _ in range(100):
 states = environment.reset()
 terminal = False
 while not terminal:
 actions = agent.act(states=states)
 states, terminal, reward = environment.execute(actions=actions)
 agent.observe(terminal=terminal, reward=reward)

Alternatively, the act-experience-update interface offers even more flexibility (see also the act-experience-update example [https://github.com/tensorforce/tensorforce/blob/master/examples/act_experience_update_interface.py]), however, note that a few stateful network layers will not be updated correctly in independent-mode (currently, exponential_normalization):

Train for 100 episodes
for _ in range(100):
 episode_states = list()
 episode_internals = list()
 episode_actions = list()
 episode_terminal = list()
 episode_reward = list()

 states = environment.reset()
 internals = agent.initial_internals()
 terminal = False
 while not terminal:
 episode_states.append(states)
 episode_internals.append(internals)
 actions, internals = agent.act(
 states=states, internals=internals, independent=True
)
 episode_actions.append(actions)
 states, terminal, reward = environment.execute(actions=actions)
 episode_terminal.append(terminal)
 episode_reward.append(reward)

 agent.experience(
 states=episode_states, internals=episode_internals,
 actions=episode_actions, terminal=episode_terminal,
 reward=episode_reward
)
 agent.update()

Finally, the evaluation loop can be defined as follows:

Evaluate for 100 episodes
sum_rewards = 0.0
for _ in range(100):
 states = environment.reset()
 internals = agent.initial_internals()
 terminal = False
 while not terminal:
 actions, internals = agent.act(
 states=states, internals=internals,
 independent=True, deterministic=True
)
 states, terminal, reward = environment.execute(actions=actions)
 sum_rewards += reward

print('Mean episode reward:', sum_rewards / 100)

Close agent and environment
agent.close()
environment.close()

Agent specification

Agents are instantiated via Agent.create(agent=...), with either of the specification alternatives presented below (agent acts as type argument). It is recommended to pass as second argument environment the application Environment implementation, which automatically extracts the corresponding states, actions and max_episode_timesteps arguments of the agent.

States and actions specification

A state/action value is specified as dictionary with mandatory attributes type (one of 'bool': binary, 'int': discrete, or 'float': continuous) and shape (a positive number or tuple thereof). Moreover, 'int' values should additionally specify num_values (the fixed number of discrete options), whereas 'float' values can specify bounds via min/max_value. If the state or action consists of multiple components, these are specified via an additional dictionary layer. The following example illustrates both possibilities:

states = dict(
 observation=dict(type='float', shape=(16, 16, 3)),
 attributes=dict(type='int', shape=(4, 2), num_values=5)
)
actions = dict(type='float', shape=10)

Note: Ideally, the agent arguments states and actions are specified implicitly by passing the environment argument.

How to specify modules

Dictionary with module type and arguments

Agent.create(...
 policy=dict(network=dict(type='layered', layers=[dict(type='dense', size=32)])),
 memory=dict(type='replay', capacity=10000), ...
)

JSON specification file (plus additional arguments)

Agent.create(...
 policy=dict(network='network.json'),
 memory=dict(type='memory.json', capacity=10000), ...
)

Module path (plus additional arguments)

Agent.create(...
 policy=dict(network='my_module'),
 memory=dict(type='tensorforce.core.memories.Replay', capacity=10000), ...
)

Callable or Type (plus additional arguments)

Agent.create(...
 policy=dict(network=TestNetwork),
 memory=dict(type=Replay, capacity=10000), ...
)

Default module: only arguments or first argument

Agent.create(...
 policy=dict(network=[dict(type='dense', size=32)]),
 memory=dict(capacity=10000), ...
)

Features

Multi-input and non-sequential network architectures

See networks documentation.

Abort-terminal due to timestep limit

Besides terminal=False or =0 for non-terminal and terminal=True or =1 for true terminal, Tensorforce recognizes terminal=2 as abort-terminal and handles it accordingly for reward estimation. Environments created via Environment.create(..., max_episode_timesteps=?, ...) will automatically return the appropriate terminal depending on whether an episode truly terminates or is aborted because it reached the time limit.

Action masking

See also the action-masking example [https://github.com/tensorforce/tensorforce/blob/master/examples/action_masking.py] for an environment implementation with built-in action masking.

agent = Agent.create(
 states=dict(type='float', shape=(10,)),
 actions=dict(type='int', shape=(), num_values=3),
 ...
)
...
states = dict(
 state=np.random.random_sample(size=(10,)), # state (default name: "state")
 action_mask=[True, False, True] # mask as'[ACTION-NAME]_mask' (default name: "action")
)
action = agent.act(states=states)
assert action != 1

Parallel environment execution

See also the parallelization example [https://github.com/tensorforce/tensorforce/blob/master/examples/parallelization.py] for details on how to use this feature.

Execute multiple environments running locally in one call / batched:

Runner(
 agent='benchmarks/configs/ppo1.json', environment='CartPole-v1',
 num_parallel=4
)
runner.run(num_episodes=100, batch_agent_calls=True)

Execute environments running in different processes whenever ready / unbatched:

Runner(
 agent='benchmarks/configs/ppo1.json', environment='CartPole-v1',
 num_parallel=4, remote='multiprocessing'
)
runner.run(num_episodes=100)

Execute environments running on different machines, here using run.py instead
of Runner:

Environment machine 1
python run.py --environment gym --level CartPole-v1 --remote socket-server \
 --port 65432

Environment machine 2
python run.py --environment gym --level CartPole-v1 --remote socket-server \
 --port 65433

Agent machine
python run.py --agent benchmarks/configs/ppo1.json --episodes 100 \
 --num-parallel 2 --remote socket-client --host 127.0.0.1,127.0.0.1 \
 --port 65432,65433 --batch-agent-calls

Save & restore

TensorFlow saver (full model)

agent = Agent.create(...
 saver=dict(
 directory='data/checkpoints',
 frequency=100 # save checkpoint every 100 updates
), ...
)
...
agent.close()

Restore latest agent checkpoint
agent = Agent.load(directory='data/checkpoints')

See also the save-load example [https://github.com/tensorforce/tensorforce/blob/master/examples/save_load_agent.py].

NumPy / HDF5 (only weights)

agent = Agent.create(...)
...
agent.save(directory='data/checkpoints', format='numpy', append='episodes')

Restore latest agent checkpoint
agent = Agent.load(directory='data/checkpoints', format='numpy')

See also the save-load example [https://github.com/tensorforce/tensorforce/blob/master/examples/save_load_agent.py].

SavedModel export

See the SavedModel example [https://github.com/tensorforce/tensorforce/blob/master/examples/export_saved_model.py] for details on how to use this feature.

TensorBoard

Agent.create(...
 summarizer=dict(
 directory='data/summaries',
 # list of labels, or 'all'
 labels=['entropy', 'kl-divergence', 'loss', 'reward', 'update-norm']
), ...
)

Act-experience-update interaction

Instead of the default act-observe interaction pattern or the Runner utility, one can alternatively use the act-experience-update interface, which allows for more control over the experience the agent stores. See the act-experience-update example [https://github.com/tensorforce/tensorforce/blob/master/examples/act_experience_update_interface.py] for details on how to use this feature. Note that a few stateful network layers will not be updated correctly in independent-mode (currently, exponential_normalization).

Record & pretrain

See the record-and-pretrain example [https://github.com/tensorforce/tensorforce/blob/master/examples/record_and_pretrain.py] for details on how to use this feature.

run.py – Runner

Agent arguments

--[a]gent (string, required unless “socket-server” remote mode) – Agent (name, configuration JSON file, or library module)
--[c]heckpoints (string, default: not specified) – TensorFlow checkpoints directory, plus optional comma-separated filename
--[s]ummaries (string, default: not specified) – TensorBoard summaries directory, plus optional comma-separated filename
--recordings (string, default: not specified) – Traces recordings directory

Environment arguments

--[e]nvironment (string, required unless “socket-client” remote mode) – Environment (name, configuration JSON file, or library module)

--[l]evel (string, default: not specified) – Level or game id, like CartPole-v1, if supported

--[m]ax-episode-timesteps (int, default: not specified) – Maximum number of timesteps per episode

--visualize (bool, default: false) – Visualize agent–environment interaction, if supported

--visualize-directory (bool, default: not specified) – Directory to store videos of agent–environment interaction, if supported

--import-modules (string, default: not specified) – Import comma-separated modules required for environment

 tune.py – Hyperparameter tuner

tune.py – Hyperparameter tuner

Uses the BOHB optimizer (Bayesian Optimization and Hyperband) [https://github.com/automl/HpBandSter] internally.

Environment arguments

--[e]nvironment (string, required) – Environment (name, configuration JSON file, or library module)

--[l]evel (string, default: not specified) – Level or game id, like CartPole-v1, if supported

--[m]ax-episode-timesteps (int, default: not specified) – Maximum number of timesteps per episode

--import-modules (string, default: not specified) – Import comma-separated modules required for environment

 General agent interface

General agent interface

Initialization and termination

	
static TensorforceAgent.create(agent='tensorforce', environment=None, **kwargs)

	Create an agent from a specification.

	Parameters

	
	agent (specification | Agent class/object | callable[states -> actions]) – JSON file,
specification key, configuration dictionary, library module, or Agent
class/object. Alternatively, an act-function mapping states to actions which is
supposed to be recorded.
(default: Tensorforce base agent).

	environment (Environment object) – Environment which the agent is supposed to be trained
on, environment-related arguments like state/action space specifications and
maximum episode length will be extract if given
(recommended).

	kwargs – Additional agent arguments.

	
TensorforceAgent.reset()

	Resets possibly inconsistent internal values, for instance, after saving and restoring an
agent. Automatically triggered as part of Agent.create/load/initialize/restore.

	
TensorforceAgent.close()

	Closes the agent.

Reinforcement learning interface

	
TensorforceAgent.act(states, internals=None, parallel=0, independent=False, deterministic=True, evaluation=None)

	Returns action(s) for the given state(s), needs to be followed by observe() unless
independent mode.

See the act-observe script [https://github.com/tensorforce/tensorforce/blob/master/examples/act_observe_interface.py]
for an example application as part of the act-observe interface.

	Parameters

	
	states (dict[state] | iter[dict[state]]) – Dictionary containing state(s) to be acted on
(required).

	internals (dict[internal] | iter[dict[internal]]) – Dictionary containing current
internal agent state(s), either given by initial_internals() at the beginning of
an episode or as return value of the preceding act() call
(required if independent mode and agent
has internal states).

	parallel (int | iter[int]) – Parallel execution index
(default: 0).

	independent (bool) – Whether act is not part of the main agent-environment interaction,
and this call is thus not followed by observe()
(default: false).

	deterministic (bool) – Whether action should be chosen deterministically, so no
sampling and no exploration, only valid in independent mode
(default: true).

	Returns

	dict[action] | iter[dict[action]], dict[internal] | iter[dict[internal]] if internals
argument given: Dictionary containing action(s), dictionary containing next internal
agent state(s) if independent mode.

	
TensorforceAgent.observe(reward=0.0, terminal=False, parallel=0)

	Observes reward and whether a terminal state is reached, needs to be preceded by act().

See the act-observe script [https://github.com/tensorforce/tensorforce/blob/master/examples/act_observe_interface.py]
for an example application as part of the act-observe interface.

	Parameters

	
	reward (float | iter[float]) – Reward
(default: 0.0).

	terminal (bool | 0 | 1 | 2 | iter[..]) – Whether a terminal state is reached, or 2 if
the episode was aborted
(default: false).

	parallel (int, iter[int]) – Parallel execution index
(default: 0).

	Returns

	Number of performed updates.

	Return type

	int

Get initial internals (for independent-act)

	
TensorforceAgent.initial_internals()

	Returns the initial internal agent state(s), to be used at the beginning of an episode as
internals argument for act() in independent mode

	Returns

	Dictionary containing initial internal agent state(s).

	Return type

	dict[internal]

Experience - update interface

	
TensorforceAgent.experience(states, actions, terminal, reward, internals=None)

	Feed experience traces.

See the act-experience-update script [https://github.com/tensorforce/tensorforce/blob/master/examples/act_experience_update_interface.py]
for an example application as part of the act-experience-update interface, which is an
alternative to the act-observe interaction pattern.

	Parameters

	
	states (dict[array[state]]) – Dictionary containing arrays of states
(required).

	actions (dict[array[action]]) – Dictionary containing arrays of actions
(required).

	terminal (array[bool]) – Array of terminals
(required).

	reward (array[float]) – Array of rewards
(required).

	internals (dict[state]) – Dictionary containing arrays of internal agent states
(required if agent has internal states).

	
TensorforceAgent.update(query=None, **kwargs)

	Perform an update.

See the act-experience-update script [https://github.com/tensorforce/tensorforce/blob/master/examples/act_experience_update_interface.py]
for an example application as part of the act-experience-update interface, which is an
alternative to the act-observe interaction pattern.

Pretraining

	
TensorforceAgent.pretrain(directory, num_iterations, num_traces=1, num_updates=1, extension='.npz')

	Simple pretraining approach as a combination of experience() and update, akin to
behavioral cloning, using experience traces obtained e.g. via recording agent interactions
(see documentation [https://tensorforce.readthedocs.io/en/latest/basics/features.html#record-pretrain]).

For the given number of iterations, load the given number of trace files (which each contain
recorder[frequency] episodes), feed the experience to the agent’s internal memory, and
subsequently trigger the given number of updates (which will use the experience in the
internal memory, fed in this or potentially previous iterations).

See the record-and-pretrain script [https://github.com/tensorforce/tensorforce/blob/master/examples/record_and_pretrain.py]
for an example application.

	Parameters

	
	directory (path) – Directory with experience traces, e.g. obtained via recorder; episode
length has to be consistent with agent configuration
(required).

	num_iterations (int > 0) – Number of iterations consisting of loading new traces and
performing multiple updates
(required).

	num_traces (int > 0) – Number of traces to load per iteration; has to at least satisfy
the update batch size
(default: 1).

	num_updates (int > 0) – Number of updates per iteration
(default: 1).

	extension (str) – Traces file extension to filter the given directory for
(default: “.npz”).

Loading and saving

	
static TensorforceAgent.load(directory=None, filename=None, format=None, environment=None, **kwargs)

	Restores an agent from a directory/file.

	Parameters

	
	directory (str) – Checkpoint directory
(required, unless saver is specified).

	filename (str) – Checkpoint filename, with or without append and extension
(default: “agent”).

	format ("checkpoint" | "numpy" | "hdf5") – File format
(default: format matching directory and
filename, required to be unambiguous).

	environment (Environment object) – Environment which the agent is supposed to be trained
on, environment-related arguments like state/action space specifications and
maximum episode length will be extract if given
(recommended).

	kwargs – Additional agent arguments.

	
TensorforceAgent.save(directory, filename=None, format='checkpoint', append=None)

	Saves the agent to a checkpoint.

	Parameters

	
	directory (str) – Checkpoint directory
(required).

	filename (str) – Checkpoint filename, without extension
(default: agent name).

	format ("checkpoint" | "saved-model" | "numpy" | "hdf5") – File format, “checkpoint”
uses the TensorFlow Checkpoint [https://www.tensorflow.org/guide/checkpoint] to
save the model, “saved-model” uses the
TensorFlow SavedModel [https://www.tensorflow.org/guide/saved_model] to save an
optimized act-only model (use only if you really need TF’s SavedModel format,
loading not supported), whereas the others store only variables as NumPy/HDF5 file
(default: TensorFlow Checkpoint).

	append ("timesteps" | "episodes" | "updates") – Append timestep/episode/update to
checkpoint filename
(default: none).

	Returns

	Checkpoint path.

	Return type

	str

Tensor value tracking

	
TensorforceAgent.tracked_tensors()

	Returns the current value of all tracked tensors (as specified by “tracking” agent
argument). Note that not all tensors change at every timestep.

	Returns

	Dictionary containing the current value of all tracked tensors.

	Return type

	dict[values]

Specification and architecture

	
TensorforceAgent.get_specification()

	Returns the agent specification.

	Returns

	Agent specification.

	Return type

	dict

	
TensorforceAgent.get_architecture()

	Returns a string representation of the network layer architecture (policy, baseline,
state-preprocessing).

	Returns

	String representation of network architecture.

	Return type

	str

 Constant Agent

Constant Agent

	
class tensorforce.agents.ConstantAgent(states, actions, max_episode_timesteps=None, action_values=None, config=None, recorder=None)

	Agent returning constant action values (specification key: constant).

	Parameters

	
	states (specification) – States specification
(required, better implicitly specified via
environment argument for Agent.create(...)), arbitrarily nested dictionary of state
descriptions (usually taken from Environment.states()) with the following attributes:

	type ("bool" | "int" | "float")

 Random Agent

Random Agent

	
class tensorforce.agents.RandomAgent(states, actions, max_episode_timesteps=None, config=None, recorder=None)

	Agent returning random action values (specification key: random).

	Parameters

	
	states (specification) – States specification
(required, better implicitly specified via
environment argument for Agent.create(...)), arbitrarily nested dictionary of state
descriptions (usually taken from Environment.states()) with the following attributes:

	type ("bool" | "int" | "float")

 Tensorforce Agent

Tensorforce Agent

	
class tensorforce.agents.TensorforceAgent(states, actions, update, optimizer, objective, reward_estimation, max_episode_timesteps=None, policy='auto', memory=None, baseline=None, baseline_optimizer=None, baseline_objective=None, l2_regularization=0.0, entropy_regularization=0.0, state_preprocessing='linear_normalization', reward_preprocessing=None, exploration=0.0, variable_noise=0.0, parallel_interactions=1, config=None, saver=None, summarizer=None, tracking=None, recorder=None, **kwargs)

	Tensorforce agent (specification key: tensorforce).

Highly configurable agent and basis for a broad class of deep reinforcement learning agents,
which act according to a policy parame