

TensorForce - modular deep reinforcement learning in TensorFlow

TensorForce is an open source reinforcement learning library focused on
providing clear APIs, readability and modularisation to deploy
reinforcement learning solutions both in research and practice.
TensorForce is built on top on TensorFlow.

Quick start

For a quick start, you can run one of our example scripts using the
provided configurations, e.g. to run the TRPO agent on CartPole, execute
from the examples folder:

python examples/openai_gym.py CartPole-v0 -a examples/configs/ppo.json -n examples/configs/mlp2_network.json

In python, it could look like this:

examples/quickstart.py

import numpy as np
from tensorforce.agents import PPOAgent
from tensorforce.core.networks import layered_network_builder
from tensorforce.execution import Runner
from tensorforce.contrib.openai_gym import OpenAIGym

Create an OpenAIgym environment
env = OpenAIGym('CartPole-v0')

Create a Trust Region Policy Optimization agent
agent = PPOAgent(
 log_level='info',
 batch_size=4096,

 gae_lambda=0.97,
 learning_rate=0.001,
 entropy_penalty=0.01,
 epochs=5,
 optimizer_batch_size=512,
 loss_clipping=0.2,

 states=env.states,
 actions=env.actions,
 network=layered_network_builder([
 dict(type='dense', size=32),
 dict(type='dense', size=32)
])
)

Create the runner
runner = Runner(agent=agent, environment=env)

Callback function printing episode statistics
def episode_finished(r):
 print("Finished episode {ep} after {ts} timesteps (reward: {reward})".format(ep=r.episode, ts=r.timestep,
 reward=r.episode_rewards[-1]))
 return True

Start learning
runner.run(episodes=3000, max_timesteps=200, episode_finished=episode_finished)

Print statistics
print("Learning finished. Total episodes: {ep}. Average reward of last 100 episodes: {ar}.".format(ep=runner.episode,
 ar=np.mean(
 runner.episode_rewards[
 -100:])))

Contents:

	Agent and model overview
	Ready-to-use algorithms

	State preprocessing

	Building your own agent

	Environments
	Ready-to-use environments

	Preprocessing
	Usage

	Ready-to-use preprocessors

	Building your own preprocessor

	Runners
	Ready-to-use runners

	Building your own runner

More information

You can find more information at our TensorForce GitHub repository [https://github.com/reinforceio/TensorForce].

We have a seperate repository available for benchmarking our algorithm implementations
[here](https://github.com/reinforceio/tensorforce-benchmark).

Agent and model overview

A reinforcement learning agent provides methods to process states and
return actions, to store past observations, and to load and save models.
Most agents employ a Model which implements the algorithms to
calculate the next action given the current state and to update model
parameters from past experiences.

Environment <-> Runner <-> Agent <-> Model

Parameters to the agent are passed as a Configuration object. The
configuration is passed on to the Model.

Ready-to-use algorithms

We implemented some of the most common RL algorithms and try to keep
these up-to-date. Here we provide an overview over all implemented
agents and models.

Agent / General parameters

Agent is the base class for all reinforcement learning agents. Every
agent inherits from this class.

Model

The Model class is the base class for reinforcement learning models.

MemoryAgent

BatchAgent

Deep-Q-Networks (DQN)

Normalized Advantage Functions

Deep-Q-learning from demonostration (DQFD)

Vanilla Policy Gradient

Trust Region Policy Optimization (TRPO)

State preprocessing

The agent handles state preprocessing. A preprocessor takes the raw state input
from the environment and modifies it (for instance, image resize, state
concatenation, etc.). You can find information about our ready-to-use
preprocessors here.

Building your own agent

If you want to build your own agent, it should always inherit from
Agent. If your agent uses a replay memory, it should probably inherit
from MemoryAgent, if it uses a batch replay that is emptied after each update,
it should probably inherit from BatchAgent.

We distinguish between agents and models. The Agent class handles the
interaction with the environment, such as state preprocessing, exploration
and observation of rewards. The Model class handles the mathematical
operations, such as building the tensorflow operations, calculating the
desired action and updating (i.e. optimizing) the model weights.

To start building your own agent, please refer to
this blogpost [https://reinforce.io] to gain a deeper understanding of the
internals of the TensorForce library. Afterwards, have look on a sample
implementation, e.g. the DQN Agent [https://github.com/reinforceio/tensorforce/blob/master/tensorforce/agents/dqn_agent.py]
and DQN Model [https://github.com/reinforceio/tensorforce/blob/master/tensorforce/models/dqn_model.py].

Environments

A reinforcement learning environment provides the API to a simulated or real
environment as the subject for optimization. It could be anything from
video games (e.g. Atari) to robots or trading systems. The agent interacts
with this environment and learns to act optimally in its dynamics.

Environment <-> Runner <-> Agent <-> Model

	
class tensorforce.environments.Environment

	Base environment class.

	
actions

	Return the action space. Might include subdicts if multiple actions are available simultaneously.

Returns: dict of action properties (continuous, number of actions)

	
close()

	Close environment. No other method calls possible afterwards.

	
execute(actions)

	Executes action, observes next state(s) and reward.

	Parameters:	actions – Actions to execute.

	Returns:	(Dict of) next state(s), boolean indicating terminal, and reward signal.

	
reset()

	Reset environment and setup for new episode.

	Returns:	initial state of resetted environment.

	
states

	Return the state space. Might include subdicts if multiple states are available simultaneously.

Returns: dict of state properties (shape and type).

Ready-to-use environments

OpenAI Gym

OpenAI Universe

Deepmind Lab

Preprocessing

Often it is necessary to modify state input tensors before passing them
to the reinforcement learning agent. This could be due to various
reasons, e.g.:

	Feature scaling / input normalization,

	Data reduction,

	Ensuring the Markov property by concatenating multiple states (e.g.
in Atari)

TensorForce comes with a number of ready-to-use preprocessors, a
preprocessing stack and easy ways to implement your own preprocessors.

Usage

The

Each preprocessor implements three methods:

	The constructor (__init__) for parameter initialization

	process(state) takes a state and returns the processed state

	processed_shape(original_shape) takes a shape and returns the processed
shape

The preprocessing stack iteratively calls these functions of all
preprocessors in the stack and returns the result.

Using one preprocessor

from tensorforce.core.preprocessing import Sequence

pp_seq = Sequence(4) # initialize preprocessor (return sequence of last 4 states)

state = env.reset() # reset environment
processed_state = pp_seq.process(state) # process state

Using a preprocessing stack

You can stack multipe preprocessors:

from tensorforce.core.preprocessing import Preprocessing, Grayscale, Sequence

pp_gray = Grayscale() # initialize grayscale preprocessor
pp_seq = Sequence(4) # initialize sequence preprocessor

stack = Preprocessing() # initialize preprocessing stack
stack.add(pp_gray) # add grayscale preprocessor to stack
stack.add(pp_seq) # add maximum preprocessor to stack

state = env.reset() # reset environment
processed_state = stack.process(state) # process state

Using a configuration dict

If you use configuration objects, you can build your preprocessing stack
from a config:

from tensorforce.core.preprocessing import Preprocessing

preprocessing_config = [
 {
 "type": "image_resize",
 "kwargs": {
 "width": 84,
 "height": 84
 }
 }, {
 "type": "grayscale"
 }, {
 "type": "center"
 }, {
 "type": "sequence",
 "kwargs": {
 "length": 4
 }
 }
]

stack = Preprocessing.from_spec(preprocessing_config)
config.state_shape = stack.shape(config.state_shape)

The Agent class expects a preprocessing configuration parameter and then
handles preprocessing automatically:

from tensorforce.agents import DQNAgent

agent = DQNAgent(config=dict(
 states=...,
 actions=...,
 preprocessing=preprocessing_config,
 # ...
))

Ready-to-use preprocessors

These are the preprocessors that come with TensorForce:

Center

Grayscale

ImageResize

Normalize

Sequence

Building your own preprocessor

All preprocessors should inherit from
tensorforce.core.preprocessing.Preprocessor.

For a start, please refer to the source of the Grayscale
preprocessor [https://github.com/reinforceio/tensorforce/blob/master/tensorforce/core/preprocessing/grayscale.py].

Runners

A “runner” manages the interaction between the Environment and the
Agent. TensorForce comes with ready-to-use runners. Of course, you can
implement your own runners, too. If you are not using simulation
environments, the runner is simply your application code using the Agent
API.

Environment <-> Runner <-> Agent <-> Model

Ready-to-use runners

We implemented a standard runner, a threaded runner (for real-time
interaction e.g. with OpenAI Universe) and a distributed runner for A3C
variants.

Runner

This is the standard runner. It requires an agent and an environment for
initialization:

from tensorforce.execution import Runner

runner = Runner(
 agent = agent, # Agent object
 environment = env # Environment object
)

A reinforcement learning agent observes states from the environment,
selects actions and collect experience which is used to update its model
and improve action selection. You can get information about our
ready-to-use agents here.

The environment object is either the “real” environment, or a proxy
which fulfills the actions selected by the agent in the real world. You
can find information about environments here.

The runner is started with the Runner.run(...) method:

runner.run(
 episodes = int, # number of episodes to run
 max_timesteps = int, # maximum timesteps per episode
 episode_finished = object, # callback function called when episode is finished
)

You can use the episode_finished callback for printing performance
feedback:

def episode_finished(r):
 if r.episode % 10 == 0:
 print("Finished episode {ep} after {ts} timesteps".format(ep=r.episode + 1, ts=r.timestep + 1))
 print("Episode reward: {}".format(r.episode_rewards[-1]))
 print("Average of last 10 rewards: {}".format(np.mean(r.episode_rewards[-10:])))
 return True

Using the Runner

Here is some example code for using the runner (without preprocessing).

from tensorforce.config import Configuration
from tensorforce.environments.openai_gym import OpenAIGym
from tensorforce.agents import DQNAgent
from tensorforce.execution import Runner

def main():
 gym_id = 'CartPole-v0'
 max_episodes = 10000
 max_timesteps = 1000

 env = OpenAIGym(gym_id)
 network_spec = [
 dict(type='dense', size=32, activation='tanh'),
 dict(type='dense', size=32, activation='tanh')
]

 agent = DQNAgent(
 states_spec=env.states,
 actions_spec=env.actions,
 network_spec=network_spec,
 batch_size=64
)

 runner = Runner(agent, env)

 def episode_finished(r):
 if r.episode % report_episodes == 0:
 logger.info("Finished episode {ep} after {ts} timesteps".format(ep=r.episode, ts=r.timestep))
 logger.info("Episode reward: {}".format(r.episode_rewards[-1]))
 logger.info("Average of last 100 rewards: {}".format(sum(r.episode_rewards[-100:]) / 100))
 return True

 print("Starting {agent} for Environment '{env}'".format(agent=agent, env=env))

 runner.run(max_episodes, max_timesteps, episode_finished=episode_finished)

 print("Learning finished. Total episodes: {ep}".format(ep=runner.episode))

if __name__ == '__main__':
 main()

Building your own runner

There are three mandatory tasks any runner implements: Obtaining an
action from the agent, passing it to the environment, and passing the
resulting observation to the agent.

Get action
action = agent.act(state)

Execute action in the environment
state, reward, terminal_state = environment.execute(action)

Pass observation to the agent
agent.observe(state, action, reward, terminal_state)

The key idea here is the separation of concerns. External code should
not need to manage batches or remember network features, this is that
the agent is for. Conversely, an agent need not concern itself with how
a model is implemented and the API should facilitate easy combination of
different agents and models.

If you would like to build your own runner, it is probably a good idea
to take a look at the source code of our Runner
class [https://github.com/reinforceio/tensorforce/blob/master/tensorforce/execution/runner.py].

Index

 A
 | C
 | E
 | R
 | S

A

 	
 	actions (tensorforce.environments.Environment attribute)

C

 	
 	close() (tensorforce.environments.Environment method)

E

 	
 	Environment (class in tensorforce.environments)

 	
 	execute() (tensorforce.environments.Environment method)

R

 	
 	reset() (tensorforce.environments.Environment method)

S

 	
 	states (tensorforce.environments.Environment attribute)

 nav.xhtml

 Table of Contents

 		TensorForce - modular deep reinforcement learning in TensorFlow

 		Agent and model overview

 		Ready-to-use algorithms

 		Agent / General parameters

 		Model

 		MemoryAgent

 		BatchAgent

 		Deep-Q-Networks (DQN)

 		Normalized Advantage Functions

 		Deep-Q-learning from demonostration (DQFD)

 		Vanilla Policy Gradient

 		Trust Region Policy Optimization (TRPO)

 		State preprocessing

 		Building your own agent

 		Environments

 		Ready-to-use environments

 		OpenAI Gym

 		OpenAI Universe

 		Deepmind Lab

 		Preprocessing

 		Usage

 		Using one preprocessor

 		Using a preprocessing stack

 		Using a configuration dict

 		Ready-to-use preprocessors

 		Center

 		Grayscale

 		ImageResize

 		Normalize

 		Sequence

 		Building your own preprocessor

 		Runners

 		Ready-to-use runners

 		Runner

 		Building your own runner

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

