
TensorForce Documentation
Release 0.2alpha

reinforce.io

Nov 16, 2017

Contents:

1 Quick start 3
1.1 Agent and model overview . 4
1.2 Environments . 6
1.3 Preprocessing . 7
1.4 Runners . 9

2 More information 13

i

ii

TensorForce Documentation, Release 0.2alpha

TensorForce is an open source reinforcement learning library focused on providing clear APIs, readability and mod-
ularisation to deploy reinforcement learning solutions both in research and practice. TensorForce is built on top on
TensorFlow.

Contents: 1

TensorForce Documentation, Release 0.2alpha

2 Contents:

CHAPTER 1

Quick start

For a quick start, you can run one of our example scripts using the provided configurations, e.g. to run the TRPO agent
on CartPole, execute from the examples folder:

python examples/openai_gym.py CartPole-v0 -a examples/configs/ppo.json -n examples/
→˓configs/mlp2_network.json

In python, it could look like this:

examples/quickstart.py

import numpy as np
from tensorforce.agents import PPOAgent
from tensorforce.core.networks import layered_network_builder
from tensorforce.execution import Runner
from tensorforce.contrib.openai_gym import OpenAIGym

Create an OpenAIgym environment
env = OpenAIGym('CartPole-v0')

Create a Trust Region Policy Optimization agent
agent = PPOAgent(

log_level='info',
batch_size=4096,

gae_lambda=0.97,
learning_rate=0.001,
entropy_penalty=0.01,
epochs=5,
optimizer_batch_size=512,
loss_clipping=0.2,

states=env.states,
actions=env.actions,
network=layered_network_builder([

dict(type='dense', size=32),

3

TensorForce Documentation, Release 0.2alpha

dict(type='dense', size=32)
])

)

Create the runner
runner = Runner(agent=agent, environment=env)

Callback function printing episode statistics
def episode_finished(r):

print("Finished episode {ep} after {ts} timesteps (reward: {reward})".format(ep=r.
→˓episode, ts=r.timestep,

→˓reward=r.episode_rewards[-1]))
return True

Start learning
runner.run(episodes=3000, max_timesteps=200, episode_finished=episode_finished)

Print statistics
print("Learning finished. Total episodes: {ep}. Average reward of last 100 episodes:
→˓{ar}.".format(ep=runner.episode,

→˓ ar=np.mean(

→˓ runner.episode_rewards[

→˓ -100:])))

1.1 Agent and model overview

A reinforcement learning agent provides methods to process states and return actions, to store past observations, and
to load and save models. Most agents employ a Model which implements the algorithms to calculate the next action
given the current state and to update model parameters from past experiences.

Environment <-> Runner <-> Agent <-> Model

Parameters to the agent are passed as a Configuration object. The configuration is passed on to the Model.

1.1.1 Ready-to-use algorithms

We implemented some of the most common RL algorithms and try to keep these up-to-date. Here we provide an
overview over all implemented agents and models.

Agent / General parameters

Agent is the base class for all reinforcement learning agents. Every agent inherits from this class.

4 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

Model

The Model class is the base class for reinforcement learning models.

MemoryAgent

BatchAgent

Deep-Q-Networks (DQN)

Normalized Advantage Functions

Deep-Q-learning from demonostration (DQFD)

Vanilla Policy Gradient

Trust Region Policy Optimization (TRPO)

1.1.2 State preprocessing

The agent handles state preprocessing. A preprocessor takes the raw state input from the environment and modifies it
(for instance, image resize, state concatenation, etc.). You can find information about our ready-to-use preprocessors
here.

1.1.3 Building your own agent

If you want to build your own agent, it should always inherit from Agent. If your agent uses a replay memory, it
should probably inherit from MemoryAgent, if it uses a batch replay that is emptied after each update, it should
probably inherit from BatchAgent.

We distinguish between agents and models. The Agent class handles the interaction with the environment, such as
state preprocessing, exploration and observation of rewards. The Model class handles the mathematical operations,

1.1. Agent and model overview 5

TensorForce Documentation, Release 0.2alpha

such as building the tensorflow operations, calculating the desired action and updating (i.e. optimizing) the model
weights.

To start building your own agent, please refer to this blogpost to gain a deeper understanding of the internals of the
TensorForce library. Afterwards, have look on a sample implementation, e.g. the DQN Agent and DQN Model.

1.2 Environments

A reinforcement learning environment provides the API to a simulated or real environment as the subject for optimiza-
tion. It could be anything from video games (e.g. Atari) to robots or trading systems. The agent interacts with this
environment and learns to act optimally in its dynamics.

Environment <-> Runner <-> Agent <-> Model

class tensorforce.environments.Environment
Base environment class.

actions
Return the action space. Might include subdicts if multiple actions are available simultaneously.

Returns: dict of action properties (continuous, number of actions)

close()
Close environment. No other method calls possible afterwards.

execute(actions)
Executes action, observes next state(s) and reward.

Parameters actions – Actions to execute.
Returns (Dict of) next state(s), boolean indicating terminal, and reward signal.

reset()
Reset environment and setup for new episode.

Returns initial state of resetted environment.

states
Return the state space. Might include subdicts if multiple states are available simultaneously.

Returns: dict of state properties (shape and type).

1.2.1 Ready-to-use environments

OpenAI Gym

OpenAI Universe

Deepmind Lab

6 Chapter 1. Quick start

https://reinforce.io
https://github.com/reinforceio/tensorforce/blob/master/tensorforce/agents/dqn_agent.py
https://github.com/reinforceio/tensorforce/blob/master/tensorforce/models/dqn_model.py

TensorForce Documentation, Release 0.2alpha

1.3 Preprocessing

Often it is necessary to modify state input tensors before passing them to the reinforcement learning agent. This could
be due to various reasons, e.g.:

• Feature scaling / input normalization,

• Data reduction,

• Ensuring the Markov property by concatenating multiple states (e.g. in Atari)

TensorForce comes with a number of ready-to-use preprocessors, a preprocessing stack and easy ways to implement
your own preprocessors.

1.3.1 Usage

The

Each preprocessor implements three methods:

1. The constructor (__init__) for parameter initialization

2. process(state) takes a state and returns the processed state

3. processed_shape(original_shape) takes a shape and returns the processed shape

The preprocessing stack iteratively calls these functions of all preprocessors in the stack and returns the result.

Using one preprocessor

from tensorforce.core.preprocessing import Sequence

pp_seq = Sequence(4) # initialize preprocessor (return sequence of last 4 states)

state = env.reset() # reset environment
processed_state = pp_seq.process(state) # process state

Using a preprocessing stack

You can stack multipe preprocessors:

from tensorforce.core.preprocessing import Preprocessing, Grayscale, Sequence

pp_gray = Grayscale() # initialize grayscale preprocessor
pp_seq = Sequence(4) # initialize sequence preprocessor

stack = Preprocessing() # initialize preprocessing stack
stack.add(pp_gray) # add grayscale preprocessor to stack
stack.add(pp_seq) # add maximum preprocessor to stack

state = env.reset() # reset environment
processed_state = stack.process(state) # process state

1.3. Preprocessing 7

TensorForce Documentation, Release 0.2alpha

Using a configuration dict

If you use configuration objects, you can build your preprocessing stack from a config:

from tensorforce.core.preprocessing import Preprocessing

preprocessing_config = [
{

"type": "image_resize",
"kwargs": {

"width": 84,
"height": 84

}
}, {

"type": "grayscale"
}, {

"type": "center"
}, {

"type": "sequence",
"kwargs": {

"length": 4
}

}
]

stack = Preprocessing.from_spec(preprocessing_config)
config.state_shape = stack.shape(config.state_shape)

The Agent class expects a preprocessing configuration parameter and then handles preprocessing automatically:

from tensorforce.agents import DQNAgent

agent = DQNAgent(config=dict(
states=...,
actions=...,
preprocessing=preprocessing_config,
...

))

1.3.2 Ready-to-use preprocessors

These are the preprocessors that come with TensorForce:

Center

Grayscale

ImageResize

8 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

Normalize

Sequence

1.3.3 Building your own preprocessor

All preprocessors should inherit from tensorforce.core.preprocessing.Preprocessor.

For a start, please refer to the source of the Grayscale preprocessor.

1.4 Runners

A “runner” manages the interaction between the Environment and the Agent. TensorForce comes with ready-to-use
runners. Of course, you can implement your own runners, too. If you are not using simulation environments, the
runner is simply your application code using the Agent API.

Environment <-> Runner <-> Agent <-> Model

1.4.1 Ready-to-use runners

We implemented a standard runner, a threaded runner (for real-time interaction e.g. with OpenAI Universe) and a
distributed runner for A3C variants.

Runner

This is the standard runner. It requires an agent and an environment for initialization:

from tensorforce.execution import Runner

runner = Runner(
agent = agent, # Agent object
environment = env # Environment object

)

A reinforcement learning agent observes states from the environment, selects actions and collect experience which is
used to update its model and improve action selection. You can get information about our ready-to-use agents here.

The environment object is either the “real” environment, or a proxy which fulfills the actions selected by the agent in
the real world. You can find information about environments here.

The runner is started with the Runner.run(...) method:

runner.run(
episodes = int, # number of episodes to run
max_timesteps = int, # maximum timesteps per episode
episode_finished = object, # callback function called when episode is finished

)

1.4. Runners 9

https://github.com/reinforceio/tensorforce/blob/master/tensorforce/core/preprocessing/grayscale.py

TensorForce Documentation, Release 0.2alpha

You can use the episode_finished callback for printing performance feedback:

def episode_finished(r):
if r.episode % 10 == 0:

print("Finished episode {ep} after {ts} timesteps".format(ep=r.episode + 1,
→˓ts=r.timestep + 1))

print("Episode reward: {}".format(r.episode_rewards[-1]))
print("Average of last 10 rewards: {}".format(np.mean(r.episode_rewards[-

→˓10:])))
return True

Using the Runner

Here is some example code for using the runner (without preprocessing).

from tensorforce.config import Configuration
from tensorforce.environments.openai_gym import OpenAIGym
from tensorforce.agents import DQNAgent
from tensorforce.execution import Runner

def main():
gym_id = 'CartPole-v0'
max_episodes = 10000
max_timesteps = 1000

env = OpenAIGym(gym_id)
network_spec = [

dict(type='dense', size=32, activation='tanh'),
dict(type='dense', size=32, activation='tanh')

]

agent = DQNAgent(
states_spec=env.states,
actions_spec=env.actions,
network_spec=network_spec,
batch_size=64

)

runner = Runner(agent, env)

def episode_finished(r):
if r.episode % report_episodes == 0:

logger.info("Finished episode {ep} after {ts} timesteps".format(ep=r.
→˓episode, ts=r.timestep))

logger.info("Episode reward: {}".format(r.episode_rewards[-1]))
logger.info("Average of last 100 rewards: {}".format(sum(r.episode_

→˓rewards[-100:]) / 100))
return True

print("Starting {agent} for Environment '{env}'".format(agent=agent, env=env))

runner.run(max_episodes, max_timesteps, episode_finished=episode_finished)

print("Learning finished. Total episodes: {ep}".format(ep=runner.episode))

if __name__ == '__main__':
main()

10 Chapter 1. Quick start

TensorForce Documentation, Release 0.2alpha

1.4.2 Building your own runner

There are three mandatory tasks any runner implements: Obtaining an action from the agent, passing it to the environ-
ment, and passing the resulting observation to the agent.

Get action
action = agent.act(state)

Execute action in the environment
state, reward, terminal_state = environment.execute(action)

Pass observation to the agent
agent.observe(state, action, reward, terminal_state)

The key idea here is the separation of concerns. External code should not need to manage batches or remember network
features, this is that the agent is for. Conversely, an agent need not concern itself with how a model is implemented
and the API should facilitate easy combination of different agents and models.

If you would like to build your own runner, it is probably a good idea to take a look at the source code of our Runner
class.

1.4. Runners 11

https://github.com/reinforceio/tensorforce/blob/master/tensorforce/execution/runner.py
https://github.com/reinforceio/tensorforce/blob/master/tensorforce/execution/runner.py

TensorForce Documentation, Release 0.2alpha

12 Chapter 1. Quick start

CHAPTER 2

More information

You can find more information at our TensorForce GitHub repository.

We have a seperate repository available for benchmarking our algorithm implementations [here](https://github.com/
reinforceio/tensorforce-benchmark).

13

https://github.com/reinforceio/TensorForce
https://github.com/reinforceio/tensorforce-benchmark
https://github.com/reinforceio/tensorforce-benchmark

TensorForce Documentation, Release 0.2alpha

14 Chapter 2. More information

Index

A
actions (tensorforce.environments.Environment at-

tribute), 6

C
close() (tensorforce.environments.Environment method),

6

E
Environment (class in tensorforce.environments), 6
execute() (tensorforce.environments.Environment

method), 6

R
reset() (tensorforce.environments.Environment method),

6

S
states (tensorforce.environments.Environment attribute),

6

15

	Quick start
	Agent and model overview
	Environments
	Preprocessing
	Runners

	More information

